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Abstract

The distribution of energy loss due to viscosity friction in plane Couette flow and Taylor–Couette flow between concentric rotating cylinders
are studied in detail for various flow conditions. The energy loss is related to the industrial processes in some fluid delivery devices and has
significant influence on the flow efficiency, flow stability, turbulent transition, mixing, and heat transfer behaviours, etc. Therefore, it is important
to know about the energy loss distribution in the flow domain and to know its influence on the flow for better understanding of the flow physics.
The calculation or methodology of calculating the energy loss distribution in the Taylor–Couette flow between concentric rotating cylinders are
not readily found in the open literature. In this paper, the principle and the calculation are given for single cylinder rotation of either the inner or
outer cylinder, and counter and same direction rotation of two cylinders. For comparison, the distribution of energy loss in a plane Couette flow is
also derived for various flow conditions. Discussions of the effect of energy loss on the flow behaviour are carried out from which some findings
are suggested.
© 2006 Elsevier Masson SAS. All rights reserved.
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1. Introduction

The flow device of Taylor–Couette flow comprising concen-
tric rotating cylinders is widely used in many industrial and
research processes found in chemical, mechanical and nuclear
engineering. The device can be only one cylinder rotating and
the other at rest, or two cylinders rotating in the same or counter
directions. The accurate calculation of the flow property is im-
portant even from the standpoint of the normal operation of
the device. The distribution of energy loss in the device may
greatly influence the industrial process of mixing, diffusion,
heat transfer, and flow stabilities, etc. Despite the importance,
it is interesting to note that the method for calculating or the
actual calculation of the distribution of energy loss in such a
device has not been found in the open literature. In particular,
for the case of two cylinders rotating in the same direction, the
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calculation of energy loss distribution may pose some difficul-
ties. In this note, the principle and the detailed derivation for the
calculation are given.

As in many engineering problems, knowing about the loss
distribution in the flow is very useful for enhancing the perfor-
mance of the device and increasing the efficiency. For example,
the design of an airfoil can be done according to the prescribed
loss distribution or pressure distribution in order to increase the
lift without compromising on the safety aspects. In the design
of axial compressors, the deflection angle of the air flow pass-
ing a blade can be varied along spanwise direction in terms of
the distribution of energy loss (along the height of the blade). In
the design of centrifugal compressors, the distribution of energy
losses is also used in the aerodynamic calculation and design of
the three-dimensional impeller and the distorted vane diffusers
for the purposes of enhancing the efficiency and of broadening
the operation range [1,2]. Energy loss due to viscosity in the
flow can reduces the efficiency of the fluid transportation. On
the other hand, it may enhance the flow stability in some cases.
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Nomenclature

A1 work done to the element by the upper layer in
Fig. 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J

A2 work done to the lower layer by the element in
Fig. 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J

E total energy of unit volume of fluid . . . . . . . . J m−3

g acceleration of gravity . . . . . . . . . . . . . . . . . . . m s−2

h width of channel for the plane Couette flow . . . . m
H energy loss of unit volume of fluid due to viscosity

in streamwise direction . . . . . . . . . . . . . . . . . . J m−3

Ht energy consumed by the fluid in the system J m−3

K kinetic energy in unit volume of fluid . . . . . . J m−3

p static pressure . . . . . . . . . . . . . . . . . . . . . . . . . . N m−2

P potential energy in unit volume of fluid . . . . J m−3

Q heat added to the system by external . . . . . . . J m−3

Q fluid volume passing through dy depth in dt time
in Fig. 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m3

R1 radius of inner cylinder . . . . . . . . . . . . . . . . . . . . . . m
R2 radius of outer cylinder . . . . . . . . . . . . . . . . . . . . . . m
Re Reynolds number
s length in streamwise direction . . . . . . . . . . . . . . . . m
u velocity component in the main flow

direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m s−1

U1 velocity of upper plate in plane Couette
flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m s−1

U2 velocity of bottom plate in plane Couette
flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m s−1

v velocity component in the transverse
direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m s−1

V total velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . m s−1

W work done by external force . . . . . . . . . . . . . . J m−3

Wt work done on the fluid in the system by all external
forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J m−3

x coordinate in the streamwise direction . . . . . . . . . m
y coordinate in the transverse direction . . . . . . . . . . m
z coordinate in the spanwise direction. . . . . . . . . . . m

Greek symbols

η radius ratio, ≡ R2/R1

θ angular coordinates . . . . . . . . . . . . . . . . . . . . . . . . rad
λ speed ratio, ≡ ω2/ω1

μ dynamics viscosity . . . . . . . . . . . . . . . . . . . . N m−2 s
ν kinematic viscosity . . . . . . . . . . . . . . . . . . . . . m2 s−1

ρ density of fluid . . . . . . . . . . . . . . . . . . . . . . . . kg m−3

τ shear stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . N m−2

φ dissipation rate . . . . . . . . . . . . . . . . . . . . . N m−2 s−1

ω1 angular velocity of the inner cylinder . . . . . rad s−1

ω2 angular velocity of the outer cylinder . . . . . rad s−1

ω1a angular velocity of the inner cylinder after
splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . rad s−1

ω2a angular velocity of the outer cylinder after
splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . rad s−1
In the past years, the problem of flow between two concen-
tric rotating cylinders has been extensively studied in terms
of the flow stability due to infinitesimal disturbances [3–5].
This problem was first investigated experimentally by Couette
and Mallock, respectively, in 1890s [3–5]. It was observed that
the torque needed to rotate the outer cylinder increased lin-
early with the rotation speed until a critical rotation speed, after
which the torque increased much more rapidly. This change was
due to a transition from stable to unstable flow at the critical
rotation speed. For the stability of an inviscid fluid moving in
concentric layers, Rayleigh used the circulation variation ver-
sus the radius to explain the instability [6] and von Karman
employed the relative roles of centrifugal force and pressure
gradient to interpret the instability initiation [7]. Their goal was
to determine the condition for which a perturbation resulting
from an adverse gradient of angular momentum can lead to
instability. In a classic paper, Taylor presented a mathemati-
cal stability analysis for viscous flow and compared the results
to laboratory observations [8]. Taylor interpreted the experi-
ment observation and linked to mathematical calculation for the
instability initiation. Taylor observed that, for a gap between
cylinders much smaller than the radii and under a given ro-
tating speed of the outer cylinder, as the rotating speed of the
inner cylinder exceeds a certain critical value, rows of cellular
pattern are developed. In Taylor’s findings, it is shown that the
increase of fluid viscosity can delay the instability. These works
have been considered as classical physics [9,10]. More detailed
experimental study for the flow structure and pattern with the
variations of the rotating speeds of the two cylinders have been
given in literature [11,12].

Plane Couette flow is the limiting status of Taylor–Couette
flow when the radii of the cylinders tend to towards infinite di-
mension. The former is linearly stable via eigenvalue analysis
for all the Reynolds number, while the latter displays a critical
value of the Taylor number from the classical linear stability
analysis performed by Taylor [8]. How the linear instability that
leads to the formation of Taylor vortices is lost in the case of
the plane Couette flow is not known. Some authors try to as-
sociate or link these two flows using numerical simulation and
experiments [13,14]. Recent studies show that the instability in
shear flows is dominated by the energy gradient in transverse
direction and the energy loss in the streamwise direction for
wall-bounded parallel flows [15,16].

Generally, the energy loss due to viscosity in shear flows
is helpful to delay the flow instability subjected to a perturba-
tion such as found in Taylor–Couette flows and demonstrated
by Taylor [8]. However, in the linear stability theory as found
in literature [3,4,8], it is not shown where the flow instability
is first started. Since the flow instability in shear flows is a lo-
cal phenomenon and is intermittent in the beginning stage, it is
interesting to find the position to first stimulate the flow insta-
bility. It is noticed that the analysis of energy loss in shear flows
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may provide some useful information for studying the flow in-
stability. In pressure driven flows, the component of Laplace
term in Navier–Stokes equation in streamwise direction repre-
sents rate of energy loss per volumetric fluid along the flow
path. For plane Poiseuille flow, this rate of energy loss is con-
stant along the transverse direction. For shear driven flows,
this energy loss along the streamline is not explicitly shown
in Navier–Stokes equations. In this paper, motivated from these
ideas, distributions of the energy loss of unit volume of fluid
along the streamline in the Taylor–Couette flows between con-
centric rotating cylinders are analysed in detail for single cylin-
der rotation of inner or outer cylinder, and counter and same
direction rotation of two cylinders. In order to present a link
and comparison to plane Couette flow, the energy loss for plane
Couette flow along the streamline is first derived for various
flow conditions. The analytical results obtained can be helpful
for understanding some complex phenomena occurring in the
flow.

2. Mechanism of energy loss enhancing stability

In Ref. [15], Dou proposed a mechanism for flow instabil-
ity and transition to turbulence in wall bounded shear flows.
This mechanism suggests that the energy gradient in transverse
direction plays a role of amplifying a disturbance and the en-
ergy loss in streamline direction serves the function of damping
the disturbance. The related analysis obtains consistent agree-
ment with the experimental data at the critical condition for wall
bounded shear flows [15]. However, how the energy loss influ-
ences the stability has not yet demonstrated in detail. Below, we
give an outline of this mechanism in principle.

In Fig. 1(a), a fluid particle is located at the interface of two
layers of fluid. The velocities for the two layers of fluid are u

and uB (u < uB), respectively. Viscous stress is generated at

Fig. 1. Sketch for two layers of fluid in shear flows. (a) A particle flows stably
in a fluid layer. (b) A particle undergoes a transversal disturbance. This particle
obtains extra energy through the moving in the upper layer. Its energy at the end
of moving is larger than its original energy due to the energy exchange at upper
layer where the energy is high. This particle is also subjected to more energy
loss (related to the energy loss of base flow) during the moving. The relative
magnitude of the gained energy and the extra energy loss during the travelling
in upper layer decides disturbance amplification and the stability of the flow.
the interface due to the momentum exchange of fluid particles
between the two layers. From the equilibrium of forces, viscous
stress is balanced by the inertial force and the pressure. From
the conservation of energy, the energy loss generated by viscous
friction is balanced by the energy drop (pressure driven flow)
or the energy input (shear driven flow). The flow of the fluid
particle in a steady laminar flow should be stable at finite Re
unless it is subjected to disturbance(s).

In Fig. 1(b), a fluid particle is located at lower layer with
a velocity u and kinetic energy 0.5ρu2. If this particle moves
to the upper layer under a disturbance and then returns to its
original streamline at the lower layer, this movement of the par-
ticle will cause its velocity and kinetic energy to change owing
to the momentum and energy exchanges with other particles
in the upper layer. This is because there is an energy gradient
along the transverse direction. If there is no energy gradient
in the transverse direction, this particle could not get energy
from the movement. Meanwhile, this particle is subjected to
energy loss along the flow path when this particle exchanges
momentum with other particles during the movement (inelas-
tic collision). We express its final velocity after the return to
its original streamline as u1 (u < u1 < uB), then this parti-
cle obtains a velocity increment (u1 − u) as compared to its
original velocity. This variation forms a streamwise disturbance
velocity (u1 − u) and a disturbance energy 0.5ρ(u2

1 − u2) of
the base flow which is the genesis of the amplifying process
of the disturbance development and can lead to flow transition
when a threshold is achieved. The energy loss of this particle
along the path during the movement reduces the magnitude of
the velocity u1 and thus reduces the magnitude of the distur-
bance energy obtained as 0.5ρ(u2

1 − u2). This energy loss of
the particle due to viscous friction should be proportional to
the energy loss of the base flow in the vicinity of the original
streamline. If the energy loss of base flow is larger, the value
of the disturbance kinetic energy 0.5ρ(u2

1 − u2) obtained will
become small, and vice versa. If the energy loss due to viscous
friction is large enough (like the case of Re less than 2000 for
pipe flow), all of the disturbance energy obtained during the
cycle of disturbance will be damped out no matter how large
the amplitude of the imposed disturbance. This is the reason
why the energy loss of base flow enhances the flow stabil-
ity.

It should be noticed from above discussion that the mecha-
nism of flow instability in shear flows is due to the variation of
kinetic energy of base flow resulting from the action of transver-
sal disturbance. The velocity profile of the mean shear flow
provides a background of leading to flow instability since it
supplies an energy gradient in the transverse direction. The in-
teraction of transversal disturbance with this energy gradient
results in the change of kinetic energy of base flow which tries
to destabilise the flow. On the other hand, the energy loss in the
streamwise direction due to viscosity serves to damp out the
outcome of the interaction, and it enhances the flow stability.
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Fig. 2. Plane Couette flow. (a) The bottom plate is at rest. (b) Two plates move
in opposite directions. (c) Two plates move in same direction.

3. Energy loss distribution for plane Couette flow

3.1. One plate moving and the other plate fixed

In the plane Couette flow, the viscous term μ∇2u in the
Navier–Stokes equations is zero, and the fluid energy E =
p + 1

2ρV 2 per unit volume for incompressible fluid is constant
along the streamwise direction. This is not to say that there is
no energy loss due to viscous friction in the flow. The friction
loss must still occur since this is a viscous fluid (the zero en-
ergy loss only occurs for inviscid flow). The energy level is kept
constant because the energy loss due to friction is exactly com-
pensated by the energy input to the flow by the moving wall.
The work done to the flow by the moving wall is balanced by
the energy loss in the flow. This can be obtained from the law
of energy conservation. For a fluid tube along the streamline in
incompressible flow, the law of energy conservation for per unit
volume of fluid is

d

(
p + 1

2
ρV 2 + ρgz

)
= −dH + dW (1)

Here, H is the energy loss per unit volume of fluid along the
streamline; W is the work input to per unit volume of fluid by
external object/influence.

For the plane Couette flow, dp = 0, d( 1
2ρV 2) = 0 and

d(ρgz) = 0. Therefore, we obtain along the streamline

dH = dW

Thus,

dH

dx
= dW

dx
(2)

This equation means that the energy loss per unit length is equal
to the work done by external object.

The velocity distribution for the plane Couette flow can be
obtained by solving the Navier–Stokes equation, as in [17]. Be-
cause of v = 0 and ∂

∂x
= 0, the said equation for steady flow

reduces to
∂

∂y

(
∂u

∂y

)
= 0 (3)

For the case of the upper plate moving while the bottom plate
is at rest (Fig. 2(a)), the streamline velocity is obtained as

u = U
y (4)
h

Fig. 3. A cubic fluid element. �z is perpendicular to x–y plane.

of which the velocity gradient is

∂u/∂y = U/h (5)

The shear stress is calculated as

τ = μ∂u/∂y = μU/h (6)

By taking an element in the fluid layer as shown in Fig. 3, the
work done to the element by the upper layer is

A1 = τ�x�z(u + �u)dt

and the work done on the lower layer by the element is

A2 = τ�x�zudt

Therefore, the net work done on the fluid element is given as
(noticing that there is no other energy input),

�A = A1 − A2 = τ�x�z�udt

This quantity equals to the energy consumed by the fluid ele-
ment, i.e., energy loss within this fluid layer. Then, the energy
loss of the fluid element per unit length in the streamwise direc-
tion is

�A

�x
= τ�z�udt

Since the shear stress is uniform in the domain (Eq. (6)), the
term in the above equation is uniform in the domain too for
a fluid element. It is noticed that this term for a fluid element
is also a Galilean Invariant because ∂u/∂y is Galilean Invari-
ant. However, the fluid element near the upper plate has higher
velocity and the fluid element near the bottom plate has lower
velocity. Thus, the energy loss of fluid element per unit volume
fluid may vary across the transverse direction. The fluid volume
passing through dy depth in dt time is

�Q = �y�zudt

Hence, the energy consumed by the fluid element per unit vol-
ume of fluid in the length of �x in streamwise direction (Fig. 3)
is

�H = �A

�Q
= τ�x�z�udt

�y�zudt
= τ�u

u�y
�x (7)

The energy loss per unit volumetric fluid in unit length along
the streamwise direction is given as

�H = τ �u
�x u �y
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As the fluid element can be made infinitesimally small in a
continuous sense, the rate of energy loss along the streamline
direction is hence obtained from the above equation as

dH

dx
≡ τ

u

du

dy
(8)

It should be emphasised that this rate of energy loss per unit
volumetric fluid in unit length along the streamwise direction
is not a Galilean Invariant. It is calculated along the flow path
in unit length and is independent of time. It is distinguished
from the usual energy dissipation rate of unit volumetric fluid
which is independent of the flow path and flow distance and is
a Galilean invariant. For a plane Couette flow, the latter can be
expressed as

φ = τ
du

dy
(9)

Strictly, this term can be also obtained by dividing the energy
consumed of a fixed fluid element in unit time with the fixed
volume of the fluid element �V (= �x�y�z) for plane Couette
flow, i.e.,

�A

�V dt
= τ�x�z�udt

�x�y�zdt
= τ�u

�y
�⇒ τ

du

dy
= φ

As is commonly known, the energy dissipation rate per unit
volumetric fluid in unit time (φ) is a Galilean invariant. Its re-
lationship to Eq. (8) is given below. The energy dissipation rate
per unit volumetric fluid in dt time is φ dt . This fixed fluid el-
ement in dt time is translated a distance udt . Therefore, the
energy dissipation of the fluid element in unit length is just the
energy loss in unit length (Eq. (8)),

φ dt

udt
= τ

du

dy
/u = τ

u

du

dy

The equivalence of Eq. (8) for a plane Poiseuille flow, for
purpose of comparison, is given as (this equation can be ob-
tained from the energy equation and momentum equation),

dH

dx
≡ −∂τ

∂y
= −μ

∂2u

∂y2
(10)

Therefore, for the pressure driven flows like a Poiseuille flow,
the rate of energy loss per unit volumetric fluid along the
streamline as given by Eq. (10) is indeed a Galilean Invariant.
There are many fundamental differences between the pressure
driven and shear driven flows.

For a given position in y direction (Fig. 2(a)) in plane Cou-
ette flow, the energy loss per unit volumetric fluid along the
streamline from x1 to x2 can be obtained via integration of
Eq. (8) as

H =
x2∫

x1

(
dH

dx

)
dx =

x2∫
x1

(
τ

u

du

dy

)
dx (11)

This kind of formulation is familiar in the context of fluid dy-
namics for turbomachinery and the other power machines [1,2].

Introducing Eq. (4)–(6) into Eq. (8), we then have

dH ≡ τ du = μ
(

du
)2

= μU = μU

2

h
(12)
dx u dy u dy yh h y
Fig. 4. Energy loss along the channel width for plane Couette flow (only top
plate moving).

It can be seen from Eq. (12) that the magnitude of energy
loss in unit volume is proportional to U and is inversely propor-
tional to h2. This equation is plotted in Fig. 4 (also see Fig. 2(a)
for the flow geometry). It can also be seen that at the bottom
wall, the energy loss of unit volume fluid is infinite for y = 0.
At the upper wall, the consumed energy of unit volume fluid
along the streamwise direction is (y = h)

dH

dx
= μU

h2
(13)

It can be observed from Fig. 4 that the energy loss per unit
volume fluid increases with decreasing y along the width of the
channel and tends towards infinity on approaching the bottom
wall. Because the energy loss has a damping role to any flow
disturbance, the flow near the bottom wall is therefore strongly
stable. Towards the top plate, the energy loss is lowest and the
flow is therefore most possibly unstable.

In the plane Poiseuille flow, the energy loss of unit volume
fluid is constant along the width of the channel; see Eq. (10).
Thus, the damping role due to energy loss to the disturbance is
the same along the channel width. This is one of the main differ-
ences between the plane Couette flow and the plane Poiseuille
flow. This difference in behaviour or characteristic may play a
role in the process leading to instability of the flow.

3.2. Two plates moving in the opposite directions

In this case, the coordinates is shifted to the centerline of the
channel if U1 = U2 (see Fig. 2(b)). If U1 �= U2, the coordinates
should shift to the place where u = 0. The velocity profile is

u = U1 + U2

2h
y (14)

The velocity gradient is

∂u

∂y
= U1 + U2

2h
(15)

and the shear stress is

τ = μ
∂u = μ

U1 + U2 (16)

∂y 2h
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By taking an element of fluid in the flow and using the same
procedure as before, similar equation to Eq. (12) can be ob-
tained,

dH

dx
≡ τ

u

du

dy
= μ

u

(
du

dy

)2

= μ(U1 + U2)

2yh
= μ(U1 + U2)

2h2

h

y
(17)

It can be seen from Eq. (17) that the magnitude of energy loss is
proportional to (U1 + U2) and is inversely proportional to 2h2.
The distribution of energy loss is shown in Figs. 5 and 6 for
different combinations of U1 and U2. The energy loss increases
with the decreasing magnitude of y along the width of the chan-
nel, and it tends to be infinite at the centreline. Thus, the flow
at the centreline is strongly stable. Therefore, the turbulence
initiation would be very unlikely to originate from the centre-
line locality; any small disturbance can be easily damped out

Fig. 5. Energy loss along the channel width for plane Couette flow with two
plates moving in opposite directions. The magnitudes of velocities of the two
plates are the same.

Fig. 6. Energy loss along the channel width for plane Couette flow with two
plates moving in opposite directions.
due to the associated large energy loss. On comparing Fig. 5 to
Fig. 6, it is found that by changing the magnitudes of veloci-
ties of the two plates, this highest energy loss position can be
moved between the two plates. This phenomenon or observa-
tion can be very useful for some industrial purposes. The fluid
particles near the walls always have the smallest energy loss.
These locations are likely places where instability can occur
first. Bottin et al.’s experiments have actually indicated that the
instability of the flow first started at the moving wall [18].

From the results of the two cases above, it can be suggested
that for plane Couette flow the position of extreme energy loss
tending towards infinite is located at the point of zero velocity.
However, it is not applicable for two plates moving in the same
direction.

3.3. Two plates moving in the same direction

When the two plates are moving in the same direction
(Fig. 2(c)), the method for calculating the energy loss as shown
for the above two cases by simply taking an element directly
from the fluid cannot be employed. This is because there is no
null velocity in the flow. For this case, the flow can be decom-
posed into two simple flows, in which one has the total energy
consumption as the original and the other has null energy con-
sumption. When the frame decomposition is used, both the first
and the second laws of thermodynamics should be followed
(see Appendix A). For the first law of thermodynamics, the total
energy consumed by the whole system is conserved no matter
how the coordinates is selected for Galilean transformation. For
the second law of thermodynamics, the direction of the energy
transfer should not be changed after the frame splitting. In the
original configuration (left picture in Fig. 7), the top plate does
the work on the fluid, and the fluid transfer the energy down
layer by layer. The fluid in the lowest layer does the work on
the bottom plate. Thus, the direction of energy transfer is from
top to down. For the present problem, the flow has to be firstly
decomposed into two simple parts (see Fig. 7). The velocity
profile is decomposed as a simple shear flow (maximum veloc-
ity U1a = U1 − U2) and a uniform flow (velocity Ub = U2). It
can be seen that the direction of energy transfer after the split-
ting is not changed, i.e., from top to bottom (middle picture in
Fig. 7). The total energy loss of the system equals to the sum

Fig. 7. Velocity profile is decomposed into two profiles: Part a: simple shear
flow; Part b: rigid body moving.
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Fig. 8. Energy loss along the channel width for plane Couette flow with two
plates moving in same direction.

from the two velocity profiles split. The energy loss for the sim-
ple shear flow (part a) can be calculated using the same method
provided in Section 2.1 for the case of only a single moving
plate. The result is similar to Eq. (12),

dH

dx
≡ τa

ua

dua

dy
= μ

ua

(
dua

dy

)2

= μU1a

yh
= μU1a

h2

h

y
(18)

where ua = u − U2 and U1a = U1 − U2.
For the part b in Fig. 7, this is a uniform flow (rigid body

moving) and the viscous friction is zero in the whole flow field.
Thus, the energy loss is zero due to no viscous friction in the
flow field. Therefore, the total energy loss for two plates mov-
ing in the same direction is the value as expressed by Eq. (18),
which is the same as that for one plate moving and the other
plate remained fix. The only issue is to change or set the correct
magnitude of the velocity from u to ua = u−U2. Strictly, this is
equivalent to changing the coordinate system. That is, the frame
of reference is moving with the flow in a uniform speed U2. The
energy loss in the new moving coordinate system is the same as
that of the previous fixed coordinate system. The distribution of
energy loss is shown in Fig. 8. The energy loss increases with
decreasing y, and it tends towards infinity at the bottom even if
the velocity at the bottom plate is not zero. From the examples
of plane Couette flow, it is found that the position of extreme
energy loss occurs always at the location of lowest velocity.

4. Energy loss distribution for Taylor–Couette flow

The solution of velocity distribution between concentric ro-
tating cylinders can be found in many texts, e.g. [3–5]. Firstly,
we define that the components of the velocity in tangential and
radial directions are expressed as u and v, respectively. Assum-
ing v = 0 and ∂

∂θ
= 0, the Navier–Stokes equation in circum-

ferential direction for steady flows reduces to

∂
(

∂u + u
)

= 0 (19)

∂r ∂r r
Fig. 9. Velocity profile for concentric rotating cylinders; (a) Inner cylinder rotat-
ing and the outer cylinder at rest; (b) Inner cylinder at rest and the outer cylinder
rotating; (c) Cylinders rotating in counter directions; (d) Cylinders rotating in
same direction.

Integrating the above equation gives the solution of the velocity,

u = Ar + B

r
(20)

and

A = ω1
(η2 − λ)

η2 − 1
and B = ω1R

2
1
(1 − λ)

1 − η2
(21)

where η = R1/R2 and λ = ω2/ω1. R1 is the radius of the in-
ner cylinder and R2 is the radius of the outer cylinder. ω1 and
ω2 are the angular velocities of the inner and outer cylinders,
respectively.

4.1. Inner cylinder rotating and the outer cylinder fixed

4.1.1. The energy loss due to friction
In Taylor–Couette flow, the viscous term μ ∂

∂r
( ∂u

∂r
+ u

r
) in

Navier–Stokes equations is zero, and the energy p + 1
2ρV 2 is

constant along the streamwise direction. The energy loss due to
friction is exactly compensated by the energy input to the flow
by the moving cylinder so that the energy level is kept constant.
The work done on the flow by the cylinder is balanced by the
energy loss in the flow.

The flow for inner cylinder rotating and the outer cylinder
fixed is shown in Fig. 9(a). Taking an element in the fluid layer
as shown in Fig. 10, the work done on the element by the outer
layer is

A1 = F1(�x + ��x) = (τ + �τ)(�s + ��s)�z(u + �u)dt

= (τ + �τ)(r�θ + �r�θ)�z(u + �u)dt
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Fig. 10. An annular fluid element taken from the flow between concentric ro-
tating cylinders. �z is perpendicular to r–θ plane.

The work done on the inner layer by the element is

A2 = F2�x = τ�s�zudt = τr�θ�zudt

Here, �s = r�θ is the length of the arc element, and �z is the
depth in the axial direction. The net work done on the element
is therefore

�A = A1 − A2

= (τ + �τ)(r�θ + �r�θ)�z(u + �u)dt

− τr�θ�zudt

= (τ r�θ�u + τ�r�θu + τ�r�θ�u + �τr�θu

+ �τr�θ�u + �τ�r�θu + �τ�r�θ�u)�zdt

The fluid volume passing through dr depth in dt time is

�Q = �r�zudt

Thus, neglecting high order terms, the energy consumed by the
element in unit volume fluid is hence

�H = �A

�Q
=

(
τ

u

�u

�r
+ τ

r
+ �τ

�r

)
r�θ (22)

The streamwise element length is �s = r�θ . The gradient of
the consumed energy (energy loss gradient) in streamwise di-
rection is,
�H

�s
= τ

u

�u

�r
+ τ

r
+ �τ

�r

Thus, when �r tends to be infinitesimal,
dH

ds
≡ τ

u

du

dr
+ τ

r
+ dτ

dr
(23)

Since the equation

2τ

r
+ dτ

dr
= 0 (24)

holds in cylindrical coordinates for Taylor–Couette flow, we
have
dH

ds
≡ τ

u

du

dr
− τ

r
(25)

This equation is equivalent to Eq. (26) below for a pres-
sure driven Poiseuille flow between concentric cylinders (Dean
flow),
dH

ds
≡ ∂τ

∂r
+ 2τ

r
(26)
4.1.2. Distribution of energy loss in the flow
The velocity gradient can be obtained from Eq. (20),

∂u

∂r
= A − B

r2
(27)

The shear stress is

τ = μ

(
∂u

∂r
− u

r

)
= μ

[(
A − B

r2

)
− 1

r

(
Ar + B

r

)]

= −μ
2B

r2
(28)

Thus,

τ

r
= −μ

2B

r3
(29)

and

τ

u

du

dr
= −μ

2B

r2

(
Ar + B

r

)−1(
A − B

r2

)
(30)

Introducing Eqs. (29) and (30) into Eq. (25), the energy loss
is

dH

ds
≡ τ

u

du

dr
− τ

r
= −μ

2B

r2

(
Ar + B

r

)−1(
A − B

r2

)
+ μ

2B

r3

= μ
2B

r2

[
1

r
−

(
Ar + B

r

)−1(
A − B

r2

)]

= μ
4B2

r4

(
Ar + B

r

)−1

(31)

Further, introducing Eqs. (20) and (21) into Eq. (31), then we
have

dH

ds
≡ τ

u

du

dr
− τ

r
= μ

4B2

r4

(
Ar + B

r

)−1

= μ
4

r4

[
ω1R

2
1

1 − λ

1 − η2

]2[
ω1

η2 − λ

η2 − 1
r + 1

r
ω1R

2
1

1 − λ

1 − η2

]−1

= 4μ
ω1R1

r2

R2
1

r2

(1 − λ)2

(1 − η2)2

[
η2 − λ

η2 − 1

r

R1
+ R1

r

1 − λ

1 − η2

]−1

= 4μ
ω1R1

h2

R4
1

r4

(1 − η)2

η2

(1 − λ)2

(1 − η2)2

×
[
η2 − λ

η2 − 1

r

R1
+ R1

r

1 − λ

1 − η2

]−1

(32)

Eq. (32) is used for calculating the energy loss. Although this
equation is derived for the case of inner cylinder rotating while
the outer cylinder is at rest, we will see in later sections that this
equation is also suitable for the case of two cylinders rotating
in counter directions.

At the inner cylinder (r = R1), the energy consumed per unit
volume fluid in unit length is

dH

ds
≡ τ

u

du

dr
− τ

r

= 4μ
ω1R1

h2

(1 − η)2

η2

(1 − λ)2

(1 − η2)2

×
[
η2 − λ

2
+ 1 − λ

2

]−1

(33)

η − 1 1 − η
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Fig. 11. Energy loss along the channel width for concentric rotating cylin-
ders (inner cylinder is rotating while outer cylinder is at rest). The radius ratio
η = 0.9 is used.

If the outer cylinder is at rest (ω2 = 0) and inner cylinder rotates
(ω1 �= 0), we have at the inner cylinder,

dH

ds
≡ τ

u

du

dr
− τ

r
= 4μ

ω1R1

h2

(1 − η)2

η2

1

(1 − η2)2

= 4μ
ω1R1

h2

(1 − R1/R2)
2

(R1/R2)2

1

(1 − R2
1/R2

2)2

= 4μ
ω1R1

h2

(R2 − R1)
2

R2
1

R4
2

(R2 − R1)2(R2 + R1)2

= 4μ
ω1R1

h2

R2
2

R2
1

R2
2

(R2 + R1)2
(34)

where h = R2 − R1 is the width between the cylinders.
When the ratio of the channel width between the cylinders to

the radius of the inner cylinder, (h/R1), tends to zero, we have

R2
2

R2
1

→ 1 and
R2

2

(R2 + R1)2
= 1

4
(35)

Thus, Eq. (34) reduces to

dH

ds
≡ τ

u

du

dr
− τ

r
= μ

ω1R1

h2
= μ

U1

h2
(36)

This expression at the limit of infinite radii of cylinders is the
same as that for plane Couette flow.

The distribution of energy loss calculated using Eq. (32)
is depicted in Fig. 11, for the case of inner cylinder rotating
while the outer cylinder is at rest. In this figure, the radius
ratio η = 0.90 is used. It can be seen that the energy loss in-
creases with increasing r along the width of the channel, and
it tends to be infinite at the surface of the outer cylinder. Thus,
the flow at the outer cylinder is strongly stable. Therefore, any
small disturbance in the locality is likely to be damped out. The
fluid particles near the inner cylinder have the smallest energy
loss. This becomes a possible locality where instability can first
occur, as generally observed in experiments [3,5,8]. This behav-
iour has important implication for some industrial processes.
4.2. Inner cylinder fixed and the outer cylinder rotating

When the inner cylinder is fixed (ω1 = 0) and the outer cylin-
der is rotating (ω2 �= 0), Eqs. (20) and (27) for the velocity
distribution still hold. For this case, Eq. (21) can be rearranged
as

A = ω2
1

1 − η2
and B = ω2R

2
2

η2

η2 − 1
(37)

where η = R1/R2, and R1 is the radius of the inner cylinder and
R2 is the radius of the outer cylinder.

In this case, taking an element in the fluid flow (Fig. 9(b)),
and using the same procedure as before, the equation for calcu-
lating the energy loss can be derived. It is found that Eqs. (22)–
(31) are still hold for this case. By substituting Eqs. (20)
and (37) into Eq. (31), then Eq. (38) is obtained,

dH

ds
≡ τ

u

du

dr
− τ

r
= μ

4B2

r4

(
Ar + B

r

)−1

= μ
4

r4

[
ω2R

2
2

η2

1 − η2

]2[
ω2

1

1 − η2
r + 1

r
ω2R

2
2

η2

η2 − 1

]−1

= 4μ
ω2R2

r2

R2
2

r2

η4

(1 − η2)2

[
1

1 − η2

r

R2
+ R2

r

η2

η2 − 1

]−1

= 4μ
ω2R2

h2

R4
2

r4

(1 − η)2η4

(1 − η2)2

×
[

1

1 − η2

r

R2
+ R2

r

η2

η2 − 1

]−1

(38)

Eq. (38) is used for calculating the energy loss for this case.
At the outer cylinder (r = R2), the energy consumed per unit
volume fluid in unit length is,

dH

ds
≡ τ

u

du

dr
− τ

r

= 4μ
ω2R2

h2

(1 − η)2η4

(1 − η2)2

[
1

1 − η2
+ η2

η2 − 1

]−1

= 4μ
ω2R2

h2

(1 − η)2η4

(1 − η2)2
(39)

Rewriting above equation, we have

dH

ds
≡ τ

u

du

dr
− τ

r
= 4μ

ω2R2

h2

(1 − η)2η4

(1 − η2)2

= 4μ
ω2R2

h2

(1 − R1/R2)
2

(1 − R2
1/R2

2)2
(R1/R2)

4

= 4μ
ω2R2

h2

R2
2

(R2 + R1)2

(
R1

R2

)4

(40)

where h = R2 − R1 is the width between the cylinders.
When the ratio of the channel width between the cylinders to

the radius of the inner cylinder, (h/R1), tends to zero, we have(
R2

1

R2
2

)4

→ 1 and
R2

2

(R2 + R1)2
= 1

4
(41)

Thus, Eq. (40) reduces to

dH ≡ τ du − τ = μ
ω2R2

2
= μ

U2
2

(42)

ds u dr r h h
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Fig. 12. Energy loss along the channel width for concentric rotating cylinders
(outer cylinder rotating while inner cylinder is at rest). The radius ratio η = 0.9
is used.

This expression at the limit of infinite radii of cylinders is also
the same as that for plane Couette flow.

The distribution of energy loss calculated using Eq. (38) is
depicted in Fig. 12, for the case of outer cylinder rotating while
the inner cylinder is at rest. It can be seen that the energy loss
decreases with increasing r along the width of the channel, and
it tends to be infinite at the surface of the inner cylinder. Thus,
the flow at the inner cylinder is strongly stable, and the flow at
the out cylinder is most unstable. The flow behaviour for this
case is very different from that for the case of inner cylinder
rotating and outer cylinder at rest. In this situation, Taylor cell
vortices pattern is skipped/bypassed and the flow directly tran-
sits to turbulence like as in plane Couette flow when the critical
condition is reached as found in experiments [5,19]. However,
the flow in this situation has not received sufficient concern in
the past as pointed by Donnelly [19].

4.3. Two cylinders rotating in counter directions

In this case, taking an element in the fluid flow (Fig. 9(c)),
and using the same procedure discussed in Section 4.1, an equa-
tion similar to Eq. (32) can be obtained,

dH

ds
≡ τ

u

du

dr
− τ

r

= 4μ
ω1R1

h2

R4
1

r4

(1 − η)2

η2

(1 − λ)2

(1 − η2)2

×
[
η2 − λ

η2 − 1

r

R1
+ R1

r

1 − λ

1 − η2

]−1

(43)

The distribution of energy loss calculated with Eq. (43) is
shown in Figs. 13 and 14 for different combination of ω1
and ω2. The energy loss decreases with decreasing radial po-
sition near the inner cylinder and increasing radial position
near the outer cylinder; it tends to be infinite at one particu-
lar position between the cylinders. The location of this position
depends on the ratio of the angular velocities of two cylinders.
Fig. 13. Energy loss along the channel width for concentric rotating cylinders
with two cylinder rotating in opposite directions. The radius ratio η = 0.9 is
used.

Fig. 14. Energy loss along the channel width for concentric rotating cylinders
with two cylinders rotating in opposite directions. The radius ratio η = 0.9 is
used.

Therefore, by changing the angular velocities of the two cylin-
ders, this position can be moved between the cylinders. Due to
the infinite energy loss at this position, the flow at this point
is strongly stable. Therefore, any small disturbances in the said
locality are likely to be damped out. The fluid particles near
the cylinder surfaces have the smallest energy loss. Therefore,
the instability generally occurs on the cylinder surfaces. The
occurrence of instability may take place first on the inner cylin-
der or the outer cylinder, depending on other factors such as
influences from radius of cylinders and the magnitudes of the
rotating speeds. If the flow at the inner cylinder exceeds the crit-
ical condition, Taylor vortex cell pattern may first occur along
the inner cylinder. If the flow at the outer cylinder exceeds the
critical condition, the flow near the outer cylinder may directly
transit to turbulence. If both of the flow at the inner cylinder
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and the flow at the outer cylinder exceed their critical condi-
tions, complex flow pattern may be formed.

4.4. Two cylinders rotating in same direction

When the two cylinders rotate in the same direction
(Fig. 9(d)), the method for calculating the energy loss used for
above-mentioned two cases cannot be directly employed. This
is because there is no null velocity in the flow. As such, the
energy loss cannot be simply obtained as for the case of sin-
gle cylinder rotating. In this case, the flow can be decomposed
as two simple flows (see Fig. 15). In doing the frame splitting,
the first and the second laws of thermodynamics should be fol-
lowed as similar to the case of the plane Couette flow with two
plates moving in same direction (see Appendix A). The veloc-
ity profile is decomposed into two parts (Fig. 15): (a) the inner
cylinder is rotating and the outer cylinder is at rest (part a);
(b) rigid body rotating with ω2 (part b). Thus, the angular ve-
locity in the flow field for part a is ωa = ω − ω2. The angular
velocities at the two cylinders for part a are ω1a = ω1 − ω2 and
ω2a = 0, respectively at inner and outer cylinders. The total en-
ergy loss is the sum of the energy losses of the two velocity
profiles of rotating flows. Next, the energy loss for the part a
can be calculated using the same method as that in Section 4.1
for the case of only one cylinder rotating. The result obtained is
similar to Eq. (32), and is given by

dH

ds
≡ τa

ua

dua

dr
− τa

r

= 4μ
ω1aR1

h2

R4
1

r4

(1 − η)2

η2

(1 − λ)2

(1 − η2)2

×
[
η2 − λ

η2 − 1

r

R1
+ R1

r

1 − λ

1 − η2

]−1

(44)

where λ = ω2a/ω1a,ω1a = ω1 − ω2, and ω2a = 0.
For the part b in Fig. 15, this is a rigid body rotating flow

and the shear stress is zero in the whole flow field. Therefore,
the energy loss for the part b is zero due to no viscous friction.
Thus, the total energy loss for two cylinder rotating in same di-
rection can be calculated just by Eq. (44), which is the same
as that for the inner cylinder rotating and the outer cylinder at
rest (Eq. (32)). The only requirement is to change the magni-
tude of the angular velocity from ω to ωa = ω − ω2. Strictly,

Fig. 15. Velocity profile for cylinders rotating in same direction is decomposed
into two profiles: Part a: outer cylinder at rest and inner cylinder rotating; Part b:
rigid body rotating.
this method is equivalent to the changing of the coordinate sys-
tem. That is, the frame of reference is rotating with the flow
in a uniform angular speed ω2. The energy loss in the new ro-
tating coordinate system is the same as that in the old fixed
coordinates.

In Fig. 9(d) and Fig. 15, it is assumed that the rotating speed
of the inner cylinder is larger than that of the outer cylinder
(ω1 > ω2). If the rotating speed of the inner cylinder is less
than that of the outer cylinder (ω1 < ω2), similar method can
be used.

The distribution of energy loss calculated using Eq. (44) is
shown in Fig. 16, for the case of two cylinders rotating in same
direction. This picture is the same as Fig. 11 except the nor-
malised ordinate, i.e., μω1R1/h2 in Fig. 11 being replaced by
μ(ω1 − ω2)R1/h2 in Fig. 16. Therefore, the behaviour of en-
ergy loss for the two cases is identical. It can be seen from
Fig. 16 that the energy loss increases with increasing r along
the width of the channel, and it tends to be infinite at the surface
of the outer cylinder. The flow at the inner cylinder has lowest
energy loss. Thus, the flow at the outer cylinder is strongly sta-
ble and the flow near the inner cylinder is most unstable. From
this case, it is found that even if the flow velocity is not zero at
the outer cylinder, the energy loss also tends towards infinity.
Therefore, summarising all the studied four cases, it is found
that there is always a location in Taylor–Couette flow at which
the velocity is the lowest and the energy loss is towards infinity.

Taylor was able to determine the critical condition of insta-
bility in the flow between concentric rotating cylinders via a
mathematical stability analysis for viscous flow [8]. Strictly, in
Taylor’s analysis, it has also included the influence of energy
loss as indicated by the Taylor number although the energy loss
distribution is not considered. However, the present theory does
not in any way contradict Taylor’s analysis. On other hand, the
present analysis reveals a potential mechanism found in most
flow problems. We surmise that the principle of loss distribu-
tion is universal for most if not all flow problems. We further
suggest that the loss distribution plays a partial but important

Fig. 16. Energy loss along the channel width for concentric rotating cylinders
with two cylinder rotating in same direction. The radius ratio η = 0.9 is used.
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role in flow instabilities. It either strengthens or diminishes the
likelihood of occurrence of flow instability in the flows accord-
ing to the distribution.

5. Concluding remarks

In this work, the method for calculating the energy loss dis-
tribution in the Taylor–Couette flow between concentric rotat-
ing cylinders has been proposed. The principle and the detailed
derivation for the calculation are given for single cylinder ro-
tation of either inner or outer cylinder, and counter and same
direction rotation of two cylinders. The distribution of energy
loss due to viscosity in plane Couette flow and Taylor–Couette
flow between concentric rotating cylinders are derived and dis-
cussed for various flow conditions. The findings have poten-
tially important bearings on the flow stability and turbulence
transition and hence great significance in the relation to many
aspects of processes like mixing and heat transfer and others.
The findings will be helpful for clarifying some complex flow
phenomena and useful for the design of related industrial de-
vices.

For plane Couette flow, the flow on the surface of moving
plate has lowest energy loss if only one plate is moving. The
flow at this location has lowest damp mode in response to any
disturbance imposed, and hence the possibility that instability
may occur first. The position of the highest energy loss occur-
ring at the location of lowest velocity implies the presence of
strongest damping to any perturbation. Thus, the flow at this
said position tends to be stable. By changing the speed of the
two plates, this stable location can move between the two plates.

For Taylor–Couette flow between concentric rotating cylin-
ders with one at rest, the flow on the surface of the rotating
cylinder has lowest energy loss. The flow at the said position
has therefore lowest damping mechanism in the response to
any disturbance. The possibility exists that instability may oc-
cur first at this location. On the other hand, highest energy loss
occurs at the location of lowest velocity in the flow. The cor-
responding presence of strongest damping mechanism at such
position may imply the most stable region. If the inner cylinder
is rotating and the outer cylinder is at rest, the flow at the inner
cylinder is most unstable, and while the flow at the outer cylin-
der is most stable. If the inner cylinder is at rest and the outer
cylinder is rotating, the flow near the outer cylinder is most un-
stable, and while the flow at the inner cylinder is most stable.

For the counter rotating cylinders, the position of largest en-
ergy loss is located between the cylinders. By changing the an-
gular velocities of the two cylinders, this position can be shifted
between the cylinders. The most unstable locations are at the ro-
tating cylinders in terms of their speeds. The flow stability and
the flow pattern depend on the geometry and the rotating speeds
of cylinders relative to their critical conditions.

For two cylinders rotating in same direction, the behaviour
of energy loss is similar to the case of only one cylinder ro-
tating. When the energy loss is calculated, the velocity profile
must be decomposed into two parts, of which one should be
rigid body rotating. The total energy loss is the sum of the en-
ergy losses of the two velocity profiles. It is found that even
if there is no location of velocity being null, there is always a
position at which the energy loss tends towards infinity.

By summarising the results for plane Couette flow and
Taylor–Couette flow, it is found in shear driven flows that there
is always a point at which the velocity is the lowest and the en-
ergy loss is towards infinity. Owing to the strong damping role
of energy loss to disturbance, the flow is most stable at the said
location. This may be the reason for the stability of some type
of vortex flows. On the other hand, the surface of a moving ob-
ject or a rotating cylinder is the place where the flow is most
unstable. Thus, this may suggest a most effective way of mix-
ing in these areas. All these findings can be utilised in various
industrial processes.
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Appendix A. Application of frame splitting

In this paper, the frame splitting is used for the cases of two
plates moving in same direction in plane Couette flows and two
cylinders rotating in same direction in Taylor–Couette flows.
When the frame splitting is used, the selection of the coordi-
nates is not arbitrary. The basic principle for the superposition
is that the frame splitting must obey the first and second laws of
thermodynamics.

The first law of thermodynamics states that energy is con-
served; it can be neither created nor destroyed. For the applica-
tion in this study, the first law of thermodynamics is the energy
conservation law. The energy conservation can be written as
follows for the problem considered,

Wt + Q = K2 − K1 + P2 − P1 (A.1)

Here, Wt is the work done by external to the system; Q is heat
added to the system by external; K is the kinetic energy; P is
the potential energy. The subscript 1 and 2 express the state of
the system. Following the first law of thermodynamics, when
we do a frame decomposition, conservation of energy should
be kept before and after the frame splitting. The value of to-
tal energy loss in the whole system is not altered by the frame
splitting. When the flow is steady, this value is equal to the work
done by all the external objects.

The second law of thermodynamics states that the energy
can only be transferred from the region of high energy to that
of low energy and the energy transfer is irreversible. Therefore,
the direction of transfer of energy should not be changed if one
carries out the frame splitting.

We must distinguish the “energy loss along the streamwise
direction (see Eq. (8) and Eq. (25))” and the “total work done on
the whole system by all external objects”. The former is a local
quantity and is coordinate dependent (not Galilean invariant),
and the latter is a global quantity and is a Galilean invariant.

However, one may take note that the work done on a part of
flow with open boundary or on a part of system (opened system)
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is not a Galilean invariant, which is dependent on the selected
coordinates. The first law of thermodynamics is for a whole
system or an enclosed control volume; it is not just for a part
of opened system, and is not for an opened local region in the
flow field. The first law of thermodynamics is a universal law,
it is not dependent on the frame selected (Galilean frame). It
means that the work done or energy input to the whole system
by external forces is conserved, which is independent of the
coordinates.

For the case of two cylinders rotating in the same direction,
it shares some behaviour as for the case of plane Couette flow
moving in the same direction, from the view point of energy
transfer. Thus, we can split the energy field into the two parts for
these configurations, one with null energy consumption and one
with the total energy loss. This splitting obeys both the first and
the second laws of thermodynamics. Because we use a rotating
coordinates in the splitting for the case of two cylinders rotating
in the same direction in this study and the rotating coordinate
is not a Galilean frame, we give the proof for the validation of
such a frame transformation which obeys the first law of ther-
modynamics.

Now, let us apply the first law of thermodynamics to the
Taylor–Couette flow for the case of the two concentric cylin-
ders rotating in the same direction. The work done to the fluid
by a rotating cylinder in unit time can be written as (for unit
length in the axial direction)

W = Mω = Frω = (τw · 2πr)rω

= 2πr2ωτw (A.2)

where M is the torque exerted on the fluid by the rotating cylin-
der and F is the friction force exerted on the fluid by the rotating
cylinder. The shear stress is expressed as (Eq. (29) in our paper),

τ = μ

(
∂u

∂r
− u

r

)
= μ

[(
A − B

r2

)
− 1

r

(
Ar + B

r

)]

= −μ
2B

r2
(A.3)

where B = ω1R
2
1

(1−λ)

1−η2 = R2
1

1−η2 (ω1 − ω2), η = R1/R2 and
λ = ω2/ω1. R1 is the radius of the inner cylinder and R2 is
the radius of the outer cylinder. ω1 and ω2 are the angular ve-
locities of the inner and outer cylinders, respectively.

Thus, we have,

W = −2πr2ωτw = −2πr2ωμ
2B

r2

= −2πωμ2B = CBω

= CR2
1

1 − η2
(ω1 − ω2)ω = D(ω1 − ω2)ω (A.4)

where C = −4πμ and D = CR2
1

1−η2 are two constant for given R1

and R2.
For the original configuration (left picture in Fig. 15), the

work input to the system by the inner cylinder (in unit length in
the axial direction) is:

W1 = D(ω1 − ω2)ω1 (A.5)
The work done on the outer cylinder by the working fluid (in
unit length in the axial direction) is:

W2 = D(ω1 − ω2)ω2 (A.6)

Thus, the energy consumed by the fluid in the system is

Ht = W1 − W2 = D(ω1 − ω2)(ω1 − ω2)

= D(ω1 − ω2)
2 (A.7)

For the splitting configuration (middle picture in Fig. 15), The
work input to the system by the inner cylinder (in unit length in
the axial direction) is:

W1a = D(ω1 − ω2)ω1a

= D(ω1 − ω2)(ω1 − ω2)

= D(ω1 − ω2)
2 (A.8)

while the work done on the outer cylinder by the working fluid
(in unit length in the axial direction) is:

W2a = 0 (A.9)

Thus, the energy consumed by the fluid in the system is

Ht = W1 − W2 = D(ω1 − ω2)
2 − 0 = D(ω1 − ω2)

2 (A.10)

Therefore, comparing Eq. (A.7) and Eq. (A.10), it is found that
the energy consumed by the fluid is the same before and after
splitting. In other words, the (external) work on the fluid is con-
served before and after splitting. As the result, the first law of
thermodynamics is conserved after splitting.
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